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Davydov soliton and polarons in molecular chains: Partial Hamiltonian diagonalization
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The energy of a Davydov soliton from a site-independent orD2 wave-function ansatz is obtained in the
discrete chain model by using a simulated annealing approach to obtain the envelope of the soliton. Partial
diagonalization@A. A. Eremko, Y. B. Gaididei, and A. A. Vakhnenko, Phys. Status Solidi B127, 703 ~1985!#
of the Davydov Hamiltonian allows the soliton to be explicitly displayed in the Hamiltonian. The site-
dependent orD1 Davydov wave-function ansatz is examined variationally using the simulated annealing
approach. This approach leads efficiently to a minimum energy solution in the form of a uniform polaron state
as required by translational symmetry. A simple form for the polaron state is displayed. We find no evidence
for a minimum energy localized state such as is found from the more constrainedD2 wave-function ansatz.
@S1063-651X~98!15111-5#

PACS number~s!: 87.15.2v, 63.20.Ry, 02.70.Rw
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I. INTRODUCTION

In 1973 Davydov@1,2# postulated the existence of sel
localized states for condensed-matter molecular system
which high-frequency motions~excitons or molecular vibra
tions, for example! are nonlinearly coupled to low-frequenc
~acoustic or optical phonon! motions. Subsequently, Davy
dov and others refined the initial concepts and additio
mechanisms for self-localization were presented@3–5#. The
subject received a major boost in 1983 when Careriet al.
@6,7# produced spectroscopic evidence from infrared and
man spectroscopy for Davydov-like solitons in acetanilid
This apparent experimental verification was followed by
large body of work, mostly theoretical. An excellent revie
of this work is available@5#.

A variety of Hamiltonians that may or may not reflect tru
molecular systems have been used to display and presum
to exhibit the Davydov soliton@5#. One of the more widely
studied Hamiltonians involves an interaction term that is
linear in the molecular vibrations and linear in the phono
The symmetrized version is given by

H5(
n

H \v0S cn
†cn1

1

2D2J~cn
†cn111cn11

† cn!J
1(

n
F pn

2

2M
1

K

2
~qn112qn!2G

1x(
n

cn
†cn~qn112qn21!, ~1!

wherev0 is the frequency of the molecular vibration on ea
molecule of the chain,J is the dipole-dipole interaction
strength between the vibrations,M is the molecular mass,K
is the force constant between molecules,x is the nonlinear
coupling constant,qn andpn are the position and momentum
operators of moleculen, and cn (cn

†) are the annihilation
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~creation! operators of the molecular vibration associat
with moleculen. The operatorscn and cn

† obey the usual
commutator relations

@cn ,cm
† #5dnm ~2a!

and

@cn ,cm#5@cn
† ,cm

† #50. ~2b!

The Hamiltonian in Eq.~1! does not explicitly display self-
localization. As introduced by Eremko, Gaididei, and Vak
nenko @8# and further developed by Cottingham an
Schweitzer@9–11# it is possible to transform the Davydo
Hamiltonian of Eq.~1! in a formally exact manner into a
form that explicitly contains the creation operator for t
soliton, self-localized state when the site-independent Da
dov D2 wave function ansatz is used@5,12#. This transfor-
mation, which is called partial diagonalization, has be
done previously in the continuum limit@8–11#. In this paper
we introduce a simulated annealing procedure that allows
to numerically achieve a similar partial diagonalization f
the discrete form in Eq.~6! of Sec. II in the approximation
that the chain is finite in length. Using this numerically exa
form, we compute elsewhere decay times for the discr
chain as opposed to the continuum case. This finite len
approximation is tested by increasing the length of the ch
The simulated annealing algorithm is described in Appen
A. Our approach to partial diagonalization is somewhat d
ferent from the previous approaches and we describe
difference in Appendix B.

In Eq. ~1! we have used the symmetric formqn11
2qn21 in the nonlinear interaction with the phonons. A
though commonly used in studies of the Davydov soliton
has been criticized as inappropriate for hydrogen-bon
systems such as the alpha helix@13#. We pursue the symmet
6407 © 1998 The American Physical Society
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ric form in the present work since it permits comparison w
a considerable body of work and we examine other forms
subsequent work.

Other choices for the soliton wave function ansatz ha
been proposed and they include the site-dependentD1 ansatz
@14# and a modifiedD1 due to Brown and Ivic@15#. Consid-
erable debate has occurred on the issue of the best stru
for this ansatz@15#. TheD1 ansatz is the most flexible of th
extant choices and we examine it herein to determine
leads to a localized, minimum-energy state. We find tha
does not.

This paper is structured as follows: in Sec. II we achie
partial diagonalization of the Hamiltonian in Eq.~1! while
defining the creation operator of theD2 soliton, self-
localized state. We examine in Sec. III both the behavior
the D2 soliton energy and the envelope shape of theD2
soliton with respect to the Hamiltonian parameters. In S
IV we pursue theD1 ansatz using simulated annealing. W
conclude with summary remarks in Sec. V.

II. PARTIAL DIAGONALIZATION OF THE
HAMILTONIAN

We begin by transforming the molecular coordinates
phonon creation and annihilation operatorsak

† andak using
the standard transformations given by

pn5 (
k52N

N

jn
~k!F\Mvk

2 G1/2

~ak1a2k
† ! ~3!

and

qn5 i (
k52N

N

jn
~k!F \

2Mvk
G1/2

~ak2a2k
† !, ~4!

with

jn
~k!5

exp@2p i ~kn!/~2N11!#

A2N11
. ~5!

The constantN specifies a chain of length 2N11 with sites
labeled2N to N andN is taken to be finite but large enoug
so that increasingN has no effect on calculated results. Su
stituting Eqs.~3! and ~4! into Eq. ~1! yields

H5(
n

H \v0S cn
†cn1

1

2D2J~cn
†cn111cn11

† cn!J
1 (

k52N

N

\vk~ak
†ak1 1

2 !

2 (
k52N

N

(
n52N

N

cn
†cn~xk

~n!ak1xk
~n!* ak

†!, ~6!

where

x̄5xS \

2Mva
D 1/2

, ~7!

vk5vaUsin
pk

2N11U, ~8!
n

e

ure

it
it

e

f

c.

o

-

va52AK/M , ~9!

sk54x̄ sgnk cosS pk

2N11D S usin@pk/~2N11!#u
2N11 D 1/2

,

~10!

and

xk
~n!5skexpS 2p i

kn

2N11D . ~11!

The function sgnk produces the sign ofk. The above con-
ventional analysis implies a cyclic chain since from Eqs.~4!
and ~5! we find qN115q2N . We also introduce the param
eter

h5
2x̄2

\2va
5~2N11!

sk
2

8\2vk
U

k50

~12!

for later use. The Hamiltonian in Eq.~6! is the starting point
for our Davydov soliton analysis.

We define aD2 soliton creation operator by

As
†5(

m
amscm

† expF(
k

~skak2sk* ak
†!G , ~13!

wheresk andams are parameters to be determined by ene
minimization. This choice for the creation operator is due
Davydov@12# and is known as theD2 ansatz@5#. It provides
a coherent state structure for the phonons when time de
dence is included. In the present work we are only interes
in the static structure of theD2 soliton in terms of energy
minimization of the Hamiltonian expectation value for th
variational state created by the operation of the creation
erator in Eq.~13! on the vacuum. Elsewhere, we include t
time dynamics of the second quantized operators in
Heisenberg sense to examine issues of the lifetime of theD2
soliton.

Following Eremko, Gaididei, and Vakhnenko@8# and
Cottingham and Schweitzer@9–11#, we want to carry out a
partial diagonalization of Eq.~6! such that the soliton opera
tor in Eq. ~13! appears naturally. We review their approa
in Appendix B. To accomplish this task, we use the unita
transformation given by

U†5expF(
m

cm
† cmS (

k
~sk* ak

†2skak! D G , ~14!

with

Dm5UcmU†5cmexpF(
k

~sk* ak
†2skak!G ~15!

and

Bk5UakU
†5ak1sk* (

m
cm

† cm ~16!

to obtain
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H5(
n

$\v0Dn
†Dn2J~Dn

†Dn111Dn11
† Dn!%

1(
k

\vkBk
†Bk1S (

k
\vksk* skD(

mn
Dm

† DmDn
†Dn

1(
kn

~xk
~n!sk* 1xk

~n!* sk!(
m

Dm
† DmDn

†Dn

2(
kn

$~\vksk1xk
~n!!BkDn

†Dn

1~\vksk* 1xk
~n!* !Bk

†Dn
†Dn%. ~17!

Unnecessary zero-point energy terms have been drop
From Eq.~2! and the unitary transformation in Eq.~15!, it is
clear thatDn and Dn

† obey the usual commutator relation
Noting that

Dm
† DmDn

†Dn5Dm
† Dn

†DmDn1dnmDn
†Dn , ~18!

we have

H5H01(
k

\vkBk
†Bk2(

kn
$~\vksk1xk

~n!!BkDn
†Dn

1~\vksk* 1xk
~n!* !Bk

†Dn
†Dn%

1(
kn

~\vksk* sk1xk
~n!sk* 1xk

~n!* sk!(
m

Dm
† Dn

†DmDn ,

~19!

whereH0 is defined by

H05(
n

$«nDn
†Dn2J~Dn

†Dn111Dn11
† Dn!% ~20!

and

«n5\v01(
k

~\vksk* sk1xk
~n!sk* 1xk

~n!* sk!. ~21!

Note thatH0 is tridiagonal with«n andJ real. We use cyclic
boundary conditions on the chain such thatDN115D2N .

Following Eremko, Gaididei, and Vakhnenko@8#, we now
proceed to diagonalize the HamiltonianH0 by a unitary
transformation whose elements areann with

Dn5(
n

annAn ~22!

and

(
n

annamn* 5dnm , (
n

annanm* 5dnm . ~23!

Note thatann is a square matrix of dimension 2N11. If the
transformation in Eq.~22! is applied to Eq.~20!, we obtain

H05(
n

EnAn
†An ~24!
ed.

by requiring

(
n

$«nanm* ann2J~anm* an11,n1an11,m* ann!%5Endmn .

~25!

We next multiply byamm and sum overm to obtain

«mamn2J~am11,n1am21,n!5Enamn . ~26!

It is obvious from Eq.~26! thatamn can be taken real withou
loss of generality.

We now determine the parametersk by minimizing the
energy of one state, which we designate the soliton state
n5s. From Eq.~25! we have

Es5(
n

$«nans
2 22Jansan11,s%. ~27!

We require

]Es

]sk*
5(

n
ans

2 ]«n

]sk*
50 ~28!

and using Eq.~21! obtain

sk52
(nans

2 xk
~n!

\vk
. ~29!

Placing this result in Eq.~21!, we find

«n5\v01(
jm

ajs
2 ams

2 (
k

xk
~ j !* xk

~m!

\vk

2(
m

ams
2 (

k

~xk
~n!* xk

~m!1xk
~n!xk

~m!* !

\vk
, ~30!

which, using Eqs.~10!, ~11!, and~12!, becomes

«n5\v012\hH(
m

@2ams
4 1ams

2 ~am11,s
2 1am21,s

2 !#

22@2ans
2 1an11,s

2 1an21,s
2 #J . ~31!

If ams is either symmetric or antisymmetric aboutn5s, «n is
symmetric aboutn5s.

Inserting the expression for«n given by Eq.~31! into Eq.
~27!, we obtain

Es5\v022\h(
n

ans
2 ~2ans

2 1an11,s
2 1an21,s

2 !

22J(
n

ansan11,s . ~32!

Equation~32! is the standard equation, which must be min
mized to obtain the excitation envelope for theD2 Davydov
soliton @16#,

In Appendix A we describe a simulated annealing co
puter code, which can be used to obtain numerical values
the coefficientsans . Once the soliton envelope is compute
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the HamiltonianH0 is completely defined since the envelo
parametersans determinesk in Eq. ~29!, which in turn deter-
mine«n in Eq. ~31!. We can then diagonalize the tridiagon
matrix represented in Eq.~25! using the Jacobi algorithm
@17#. Consistency requires the lowest eigenvalue to beEs
and the eigencoefficientsans to be the same as those o
tained from the simulated annealing minimization. This
deed proves to be the case.

Having diagonalizedH0 , we transform the full Hamil-
tonian in Eq.~19! using Eq.~22! and obtain

H5(
n

EnAn
†An1\(

k
vkBk

†Bk

1\(
kmn

@R~k,m,n!Bk1R~k,m,n!* Bk
†#Am

† An

1(
mn

Gmn(
l

Al
†Am

† AlAn , ~33!

where

R~k,m,n!5
1

\ (
n

xk
~n!~ans

2 dmn2anmann! ~34!

and

Gmn54\h(
n

anmannF(
m

~ams
4 1ams

2 am11,s
2 !

2an11,s
2 22an,s

2 2an21,s
2 G . ~35!

Note thatR(k,s,s)50. The partially diagonalized, discret
chain Hamiltonian in Eq.~33! is the basis for the result
described herein. Although similar in spirit to previous pa
tially diagonalized Hamiltonians in the continuum appro
mation @8–11#, it differs in that fully dressed operators i
Eqs. ~15! and ~16! are used which leads to the multiexcit
tion term involvingGmn . It is important to understand tha
the Hamiltonian in Eq.~33! is equivalent to the origina
Davydov Hamiltonian in Eq.~1! having been obtained b
unitary transformations of the second-quantized operator

III. COMPUTATIONAL RESULTS FOR D2 SOLITON

We next survey the results obtained from the diagonal
tion of H0 for various choices of the underlying paramete
\v0 , \va , x̄, andJ. Note that the diagonalization proce
does not depend on temperature. As discussed in Appe
A, we arrange for the soliton to be centered about site 0.
begin by examining the energy valuesEn . We choose two
classes of parameter values: one class is exemplified by
~see Table III! and is given by\v051665 cm21, \va
5100 cm21, x̄510 cm21, andJ51 cm21; the other class is
exemplified by set 14 where\v051665 cm21, \va
588 cm21, x̄510 cm21, and J57.8 cm21. The first class
~set 5! is the smallJ regime while the second class~set 14!
represents the range of values described as the normal s
matching alpha-helix parameters@5#. In Figs. 1 and 2 we
display theD2 oscillator energy valuesEn for set 14 and se
-

-

.

-

ix
e

t 5

for

5, respectively, and in Table I the envelope amplitud
~where they are symmetric about site 0, we display only h
the envelope! for the ground state or lowest energy oscill
tor. It is clear from these results that a localized excitat
spanning 10 to 20 sites exists for the lowest energy ofH0 .
The envelope for set 5 is more localized and reflects
smaller value forJ. Furthermore, we see for set 5 that a
additional pair of energy values drop below the energy ba
Their amplitudesann are also given in Table I and we se
that they are also localized about site 0.

To understand the behavior of the oscillator energies
set 5, we examine the limitJ50. In this limit we find from
Eq. ~20! thatH0 is already diagonal and thus the transform
tion matrixann is the unit matrix andEn5«n with «n defined
in Eq. ~21! and computed in Eq.~31! in terms ofans . In this
special case ofJ50, the energiesEn are site specific; that is
energyEn is assigned to the oscillator at siten. Sincen50 is
chosen as the center of the soliton, we haveams5dm0 and
we find for n50 that

E05«05\v024\h, ~36!

which has a value of 1657 cm21 for set 5. For the two case
n511 andn521, we obtain

E115E215\v0 , ~37!

FIG. 1. Comparison ofD1 andD2 energy spectra forH0 using
set 14 parameters.

FIG. 2. Comparison ofD1 and D2 energy spectrum forH0

using set 5 parameters.
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TABLE I. Envelope amplitudesans for localized states.

Set 14 Set 5
Ground state Ground state Localized pair

n ans n ans n ann n ann

0 0.668 691 0 0.984 450 25 0.000 25 0.000
1 0.470 881 1 0.123 966 24 0.001 24 0.002
1 0.214 606 2 0.007 837 23 0.011 23 0.012
3 0.085 634 3 0.000 492 22 0.089 22 0.091
4 0.033 343 4 0.000 031 21 0.701 21 0.690
5 0.012 933 5 0.000 002 0 0.000 0 20.175
6 0.005 013 1 20.701 1 0.690
7 0.001 943 2 20.089 2 0.091
8 0.000 753 3 20.011 3 0.012
9 0.000 292 4 20.001 4 0.002

10 0.000 113 5 20.000 5 0.000
11 0.000 044
12 0.000 017
13 0.000 006
14 0.000 002
t

a
se
th
I

ba
n
n

ap

f

tate
um
be

led

ed

hers
on-
we
n-

nd
to
ed
nd,
which has the value 1665 cm21 for set 5. Finally, we have
for the remaining energies that

En5\v014\h, ~38!

which has the value 1673 cm21 for set 5. Thus, we predic
that the spectrum of the oscillator energies inH0 at smallJ
will manifest a single low energy value, an intermediate p
of nearly degenerate values, and a band of values as is
in Fig. 2. To show that the set 5 results extrapolate to
three energy values predicted above, we present in Table
sequence of calculations in whichJ is varied while other
parameters are maintained at their set 5 values. For the
of energy values we report only the lower and upper ba
energies from the finite dimensional matrix diagonalizatio
As J approaches zero, the limiting values are clearly
proached.

We next compare the energy of the localized stateES as
found in Table III with the continuum model energyESC.
Note first thatans and ES obtained by minimizing Eq.~32!
depends only onv0 , h, andJ. This is, of course, true also o
ESC given by @9#

Esc5\v022J2
16

3

\2h2

J
. ~39!
ir
en
e
I a

nd
d
.
-

A plot comparingES andESC is shown in Fig. 3 for various
values ofJ andh with \v051665 cm21. For each value of
J the plots show a locus of pairs of values ofESC and ES
increasing monotonically towards the diagonal ash de-
creases. The obvious reason for this is that the soliton s
broadens ash decreases so that the discrete and continu
values of the soliton energy converge. This behavior can
understood in more detail by examining the column labe
‘‘ n’’ in Table III. This column contains the value ofn for the
envelopeans of the localized state whereans first drops be-
low 1024 and is thus a measure of the width of the localiz
state. We find forJ57.8 thatn is larger, which indicates a
localized state spread over more sites. As argued by ot
@5#, such a state is expected to more closely follow the c
tinuum model. For a separate check on this contention,
compare in Table IV our calculated envelope with the co
tinuum model envelope given by@9,18#

ans
c 5S 2\h

J D 1/2

sechS 4\h

J
nD . ~40!

Set 9 of Table III is the most diffuse local state and we fi
from Table IV that the discrete chain envelope is similar
the continuum model. For set 5, a very narrow localiz
state, the continuum model breaks down. On the other ha
the parameterJ/\h in Eq. ~40! is clearly a measure of the
0

TABLE II. Behavior of energy levels for smallJ. Energy units are cm21.

Ground Pair Band
J Lower Upper Lower Upper

0a 1657.00 1665.00 1665.00 1673.00 1673.00
0.1 1657.00 1665.00 1665.00 1672.80 1673.2
1 1656.75 1664.63 1664.88 1670.78 1674.73
2 1656.03 1663.58 1664.56 1668.15 1676.05
3 1654.92 1662.04 1664.02 1665.34 1677.19

aValues in this row are the theoretical values atJ50.
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TABLE III. D2 soliton energies with\v051665 cm21.

Set
\va

~cm21!
x̄

~cm21!
J

~cm21!
\h

~cm21! J/\h n
ES

~cm21!

Class 1: SmallJ regime
1 100 5 1 0.500 2.000 8 1662.13
2 100 7 1 0.980 1.020 5 1660.58
3 100 8 1 1.280 0.781 5 1659.49
4 100 9 1 1.620 0.617 4 1658.21
5 100 10 1 2.000 0.500 4 1656.75
6 95 10 1 2.105 0.475 4 1656.34
7 90 10 1 2.222 0.450 4 1655.88
8 85 10 1 2.353 0.425 4 1655.37
9 100 5 2 0.500 4.000 12 1660.44

10 100 7 2 0.980 2.041 8 1659.31
11 100 10 2 2.000 1.000 5 1656.03
12 95 10 2 2.105 0.950 5 1655.65
13 90 10 2 2.222 0.900 5 1655.23

Class 2: Alpha-helix regime
14 88 10 7.8 2.273 3.436 11 1646.60
15 88 11 7.8 2.750 2.833 9 1645.54
16 70 10 7.8 2.857 2.732 9 1645.29
17 60 10 7.8 3.333 2.342 8 1644.12
18 50 10 7.8 4.000 1.949 7 1642.34
19 50 11 7.8 4.840 1.610 7 1639.89
n
ze
th
he
ar

a

the
al

-

width of the localized state in the continuum model@5#. In
Fig. 4 we plot this parameter versus the values in column
of Table III. We find that this parameter tracks with the si
of the localized state for the discrete chain. We note also
tendency for each curve in Fig. 4 to drop away from t
diagonal asES decreases. This behavior tracks with the n
rowing of the state as found by examining columnn in Table
III and further agrees with the contention that broader loc
ized states will trend toward the continuum model.

FIG. 3. Correlation plot for discrete chain soliton energyES vs
continuum model energyESC.
e

-

l-

IV. D1 ANSATZ

TheD1 Davydov ansatz allows for site dependence of
parameterssk in Eq. ~13! and is considered a more gener
form for dressing the vibron operatorcm @15,19#. In terms of
a D1 soliton creation operator the ansatz is given by@14#

TABLE IV. Comparison of continuum envelope with dis
cretized envelope.

n S2\h

J D1/2

sechS4\h

J
nD ans

Set 9J/\h54.000
0 0.7071 0.6327
1 0.4582 0.4753
2 0.1880 0.2436
3 0.0702 0.1089
4 0.0259 0.0472
5 0.0095 0.0203
6 0.0035 0.0087
7 0.0013 0.0038
8 0.0005 0.0016
9 0.0002 0.0007

10 0.0001 0.0003
11 0.0 0.0001

Set 5 J/\h50.500
0 2.0000 0.9845
1 0.0013 0.1240
2 0.0 0.0078
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As
†5(

m
amscm

† expF(
k

~sk
~m!ak2sk

~m!* ak
†!G . ~41!

To make use of this definition, we first obtain the expectat
value of the Hamiltonian in Eq.~6! using a state formed by
operation of the creation operator in Eq.~41! on the vacuum
state. Assuming only cyclic boundary conditions given by

sk
~N11!5sk

~2N! ~42!

and

aN11,n5a2N,n , ~43!

wheresk
(m) is allowed to be complex andamn is taken to be

real, we obtain

Es5\v0 (
m52N

N

ams
2 1 (

m52N

N

ams
2 (

k52N

N

~\vksk
~m!sk

~m!*

1xk
~m!sk

~m!* 1sk
~m!xk

~m!* !22J (
m52N

N

amsam11,s

3expF2
1

2 (
k52N

N

~sk
~m!2sk

~m11!!~sk
~m!* 2sk

~m11!* !G
3cosF (

k52N

N

~Rsk
~m!Isk

~m11!2 Isk
~m!Rsk

~m11!!G . ~44!

The superscriptsR and I indicate real and imaginary parts
We have dropped zero-point energy terms and the pho
energy from Eq.~44!. We have not included a thermal ave
age of the phonon bath, which is sometimes done~so-called
thermalized Hamiltonian! @5# since we agree with Schweitze
@11# that this procedure is contrary to normal practice
quantum statistical mechanics. Such an average adds the
tor coth(\bvk/2) to the exponential in the term which de
pends onJ. We include the effect of temperature in a sep
rate paper by examining the behavior of relevant ti
correlation functions where appropriate quantum statist
averages have been taken in a rigorous, systematic man

FIG. 4. Comparison of the parameterJ/\h with the valuen for
which ans first drops below 1024.
n
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To properly use Eq.~44!, there are some technical poin
related to thek50 terms. We first require that the facto
s0

(n) be independent of the site labeln. This is a minor re-
striction on the wave function ansatz, which keeps the ex
nential factor in Eq.~44! from misbehaving. We next scal
the resulting factor such thats05(s0 /v0) s̄0 . Using Eq.
~12!, this permits us to express thek50 terms in Eq.~44! in
terms of the parameterh. In the work below we treats̄0 as
the variational parameter fork50 terms. It is allowed to be
a complex number.

With the technical points fork50 in hand, we have mini-
mized the energy expression in Eq.~44! using the simulated
annealing procedure in Appendix A by independently va
ing the parametersams, Rsk

(m) , and Isk
(m) subject to the nor-

malization constraint(m52N
N ams

2 51. We have changed bot
N, the size of the cyclic chain, and the initial starting poin
As starting points for the annealing, we have chosen~1! the
D2 values for the parameters as described in Secs. II and
and ~2! the values for a uniform polaron, namely,

ams5
1

A2N11
~45!

and

sk
~m!52

xk
~m!

\vk
. ~46!

We point out that forN sufficiently large, the localizedD2
soliton is unaffected to a high degree of numerical accur
by the choice of cyclic as opposed to truncated chain bou
aries. We find for all cases studied includingN51 – 5, 10, 21
with Hamiltonian parameters specified by set 14 in Table
that a common minimum energy state is always achieved
that the variational parameters are given by

ams5
1

A2N11
~47!

and

sk
~m!52

lk

\vk
xk

~m! ~48!

where lk is essentially the only free variational parame
and is real and even ink. This seems like a remarkable resu
considering that a large number of freely varying parame
converge to this simple form. However, comparing with Eq
~45! and ~46!, we see that the minimum energy state for t
D1 ansatz is a modified uniform polaron state as required
translational symmetry for the eigenstates of the full Ham
tonian@20#, and is not a localized state as proposed by Da
dov @14#. It is evident from Eq.~44! that Es cannot be mini-
mized with respect toams under the constraints o
normalization for theams in Eq. ~23! and translational sym-
metry unless the exponential factors become independen
lattice site numbern. This requirement leads directly to Eq
~48!.

In analogy with Eq.~19! for theD2 case, it is useful to se
up a similar Hamiltonian for theD1 case in order to estab
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lish a HamiltonianH0 and a spectrum of oscillator energie
To accomplish this transformation of the Davydov Ham
tonian in Eq.~6!, we define

f n5(
k

lk

\vk
~xk

~n!ak2xk
~n!* ak

†!, ~49!

U†5expS (
m

cm
† cmf mD , ~50!

dm5UcmU†5cmef m, ~51!

and

bk5UakU
†5ak1(

m
sk

~m!* cm
† cm , ~52!

with cm
† cm5dm

† dm . It can be shown that

@ f n , f m#50 ~53!

and

^ef n2 f n11&v5^ef n112 f n&v

5expS 28(
k

lk
2sk

2

\2vk
2 sin2

pk

2N11D , ~54!

where the expectation value is taken with respect to
vacuum state denoted by subscriptv. With these definitions
we find that

H5H01(
k

\vkbk
†bk2J(

n
@~e2 f n1 f n11

2^e2 f n1 f n11&v!dn
†dn11

1~e2 f n111 f n2^e2 f n111 f n&v!dn11
† dn#

1(
kn

@~lk21!xk
~n!bk1~lk21!xk

~n!* bk
†#dn

†dn

1(
nm

F(
k

xk
~m!xk

~n!* S lk
222lk

\vk
D Gdm

† dn
†dmdn ~55!

and

H05(
n

H F\v01(
k

sk
2

\vk
~lk

222lk!G
3dn

†dn2 J̄~dn
†dn111dn11

† dn!J , ~56!

with

J̄5J expS 28(
k

lk
2sk

2

\2vk
2 sin2

pk

2N11D . ~57!

Diagonalization ofH0 produces theD1 spectrum of oscilla-
tor energies whenlk is chosen to minimize the lowest en
ergy value. Note that the phonon-vibron interaction term
Eq. ~55! vanishes forlk51. We further note that the form o
e

n

the expectation value in Eq.~44! requires one for complete
ness to set up the Hamiltonian in Eq.~55! with terms involv-
ing the vacuum expectation value in Eq.~54!. These interac-
tion terms, although small in magnitude, should not
ignored when dynamics is considered.

As a concrete example of the results obtained forD1
minimization, we show in Fig. 1 a comparison of the oscil
lator energy spectrumEn obtained byD1 andD2 minimi-
zation using set 14 withN520. TheD1 spectrum clearly
lies below theD2 spectrum and there is not a gap separat
the lowest-energy oscillator from higher-energy ones wit
the limits of the finite chain computation. Similar results f
set 5 are shown in Fig. 2. Plots oflk values for sets 5 and 14
are given in Fig. 5.

Since theD1 ansatz as described by Eqs.~47! and~48! is
the lowest energy solution, we consider next the issue
whether theD2 state is at least metastable with respect
changes in the parametersans andsk

(n) . To accomplish this
task, we set allans andsk

(n) values equal to theirD2 values
except for onesk

(n) , which is specified assi
(p)5si

D21Rs i
(p)

whereRs i
(p) is an infinitesimal, real change. Substitution in

Eq. ~44! yields to lowest order inRs i
(p) the result

Es5Es
D21aps

D2Fx i
~p!1x i

~p!* 22 (
m52N

N

ams
D2x i

~m!G Rs i
~p! ,

~58!

where the superscriptD2 indicatesD2 soliton values. The
coefficient of Rs i

(p) is clearly a real number and thusRs i
(p)

can be chosen to have the appropriate sign to lower the
ergy Es relative to Es

D2. Therefore, theD2-soliton energy
Es

D2 is not a metastable point in the space ofans and sk
(n)

since infinitesimal changes in one of thesk
(n) can lower the

energy.
To further pursue this point regarding the choice of t

wave function ansatz or creation operator and the ene
surfaceEs , it is useful to consider the modifiedD1 ansatz
due to Brown and Ivic@15#. We call this case the BI ansat
and it is given by

sk
~n!5sk2d

xk
~n!

\vk
, ~59!

FIG. 5. Plots oflk values for sets 5 and 14 withN520.
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whered is a variational parameter. This choice forsk
(n) rep-

resents a constraint upon the form ofsk
(n) as compared to the

full D1 minimization considered above and is expected
produce a higher energy. As pointed out by Brown and I
@15#, this form allows one to move from theD2 soliton (d
50) to the standard uniform polaron (d51). Substitution of
Eq. ~59! into Eq. ~44! with minimization ofsk yields

Es
BI5@\v01~d222d!4\h# (

n52N

N

ans
2

1~d21!24\h (
n52N

N

~ans
4 1ans

2 an11,s
2 !

22JBI (
n52N

N

~ansan11,s!, ~60!

with

JBI5J expS 28d2 (
k52N

N sk
2

\2vk
2 sin2

pk

2N11D ~61!

and

aN11,s5a2N,s ~62!

when cyclic boundary conditions are imposed. For fixedd
we have used the simulated annealing algorithm in Appen
A to find ans and Es

BI . A plot of Es
BI as a function ofd is

given in Fig. 6 using set 14 parameters. The correspond
ans values ford50.875 are shown in Fig. 7. We find from
Fig. 6 that there is a minimum inEs

BI neard50.875; how-
ever, the curve forEs

BI lies above theD1 minimization value
of Es51641.415 267 cm21. This is as expected since the B
ansatz is constrained relative toD1. Brown and Ivic make
the point that the energy difference betweenEs

BI at d
50.875 andEs

BI at d51.0, the standard uniform polaro
limit, represents an energy gap that can sustain the local
structure shown in Fig. 7. We note that the location of
center of the soliton in Fig. 7 at aboutn5211 arises from
the nature of the random walk used for convergence and

FIG. 6. Es
BI as a function ofd for set 14.
o
c

ix

g

ed
e

he

fact thatans deviates only slightly from the uniform value o
0.156 1738 atN520. The center of the soliton freezes o
randomly. The values ofans are converged to within61026,
which accounts for the small amount of noise in the plot.

From our perspective we find that full minimization of th
D1 ansatz without constraints leads to the loss of locali
tion and the energy gap through the formation of the mo
fied uniform polaron solution of Eqs.~47! and ~48!. This is
consistent with the requirement of translational symmetry
the eigenstates. Although these time-independentD1/D2 re-
sults suggest that aD2 soliton will be unstable, it is possible
that theD2 state, once created, can exist coherently fo
period of time via bottlenecking or related effects. We a
dress these lifetime issues in a separate paper.

V. SUMMARY

Several decades after its introduction, the existence of
Davydov soliton in molecular chains continues to be a qu
tion. As pointed out by Cottingham and Schweitzer@9–11#,
the key to proving its existence lies in correct and approp
ate application of quantum statistical mechanical princip
to the problem. A first step in this regard is the partial diag
nalization principle introduced by Eremko, Gaididei, and V
khnenko for the continuum limit case@8#. This approach al-
lows one to explicitly display the soliton as a creatio
operator in the Hamiltonian. The next step is to remove
restriction to the continuum case and carry out partial dia
nalization on a molecular chain. We have carried out t
step herein for theD2 soliton case by transforming the sta
dard Davydov Hamiltonian in Eq.~1! into the form in Eq.
~33!, which explicitly includes the soliton, self-localize
state. For a chain of length 2N11 this transformation is
rigorous and involves no approximations other than num
cal diagonalization of a matrix.

The transformation from Eq.~1! to Eq. ~33! involves the
use of an approach for computing the soliton envelope,ans ;
namely, simulated annealing. This procedure allows for
curate and rapid computation ofans for a zero momentum
Davydov soliton located at the center of the chain on site

FIG. 7. Site amplitudesans for BI computation of set 14 at
d50.875.
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6416 PRE 58CLOGSTON, McDOWELL, TSAI, AND HANSSEN
We argue that the Hamiltonian in Eq.~33! is the proper
starting point for an analysis of the Davydov problem in t
context of the standardD2 Davydov soliton.

The creation operator for the soliton state in Eq.~13! uses
the standardD2 form for the Davydov soliton and it can b
argued that this is not the best form. We address this poin
examining the more general form known as theD1 ansatz in
Eq. ~41!. This choice leads to the energy expression in
~44!, which is to be minimized. Using the simulated anne
ing approach that allows for arbitrary variations of all t
ansatz parameters, we have found that the minimum solu
always turns out to be a modified uniform polaron soluti
with the ansatz parameters given by Eqs.~47! and ~48!. We
believe this to be a result that potentially has application
other condensed matter problems involving similar polar
like transformations. In obtaining this result we have ma
no symmetry assumptions regarding the ansatz param
other than the cyclic condition that the endpoints of the ch
~labeled -N andN! are coupled. This condition is reflected
Eqs.~42! and~43!. We have shown further that theD2 soli-
ton energy is not metastable and can be lowered by in
tesimal changes in the parametersk

(n) . The Brown-Ivic modi-
fied D1 ansatz, a constrained form of the fullD1 ansatz, is
found to have an energy above the fullD1 solution~modi-
fied uniform polaron! but below the standard uniform po
laron solution. From our viewpoint of using the fullD1 case,
the soliton and polaron perspectives merge to form a m
fied uniform polaron solution as described by Eqs.~47! and
~48!.

Although theD2 soliton that arises from a restricted for
of the D1 ansatz is higher in energy than theD1 case, it is
possible that, if formed, it could persist as a coherent st
The gap shown in Fig. 1 between the localized, lowe
energy oscillator energy (D2 soliton! and the other levels
enhances this viewpoint. On the other hand Cottingham
Schweitzer have shown using continuum partial diagonal
tion and second-order perturbation theory that the decay
is very short ~less than a picosecond! for set 14 @9–11#.
However, a serious issue in this case is the use of the
tinuum approximation, simple perturbation theory, and
meaning of the decay time computed. The general prob
resides in the question of how one carries out quantum
namics for condensed matter problems. In a separate p
we examine this problem in the context of DavydovD2
solitons using the partially diagonalized, discrete molecu
chain Hamiltonian in Eq.~33!.

We conclude by observing that theD2 andD1 creation
operators in Eqs.~13! and ~41! insert one quanta into th
vibron modes. Kerr and Lomdahl@21,22#, following a sug-
gestion by one of us~AMC!, have examined the case fo
multiquanta creation operators. To date they have found
increasing the number of quanta does not increase the st
ity of the soliton.
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APPENDIX A: SIMULATED ANNEALING SOLUTION
FOR ENVELOPE AMPLITUDES

To obtain a set of envelope amplitudes,ans , which mini-
mize the energy in Eq.~32!, we use a simulated annealin
algorithm. Since the expected localized solution has z
momentum, we start by settingans5dn0 ; that is, we localize
the envelope at site 0 in the middle of the chain. We th
carry out a Metropolis Monte Carlo walk as follows: w
select a new value for the coefficients according to the r

ans
~new!5ans

~old!1d~R2 1
2 !, ~A1!

whered is a jump distance andR is a uniform random num-
ber between 0 and 1. We next uniformly scale the new val
to maintain the normalization

15(
n

~ans
~new!!2. ~A2!

We compute a new energy,\Es
(new), from Eq.~32! and a test

function ex where

x5
Es

~old!2Es
~new!

Ta
, ~A3!

whereTa is an annealing temperature. If the test function
greater than one, we accept the move. If the test functio
less than one, we compare withR and accept the move i
greater than the random number. The parametersd and Ta
are chosen and varied interactively until convergence is
tained onEs . We find that the process goes very quickly a
one can obtain the envelope amplitudesans to any desired
accuracy.

APPENDIX B: PARTIAL DIAGONALIZATION

In this appendix we examine the partial diagonalizati
procedure of Eremko, Gaididei, and Vakhnenko@8# as pur-
sued by Cottingham and Schweitzer@9–11# in terms of a
discrete chain using the notation of Sec. II. We begin
carrying out a linear shift of the phonon modes such tha

bk5ak2 f k , ~B1!

where f k is a c number. Note the difference with Eq.~16!
where the shift contains the occupation number operato
the high-frequency vibrational modes. It is at this junctu
that we differ with the previous partial diagonalization pr
cess. Using Eq.~B1!, we find that the Hamiltonian is trans
formed to

H5H01 (
k52N

N

\vkbk
†bk1 (

k52N

N

\vk~ f k* bk1bk
†f k!

2 (
k52N

N

(
n52N

N

cn
†cn~xk

~n!bk1xk
~n!* bk

†!, ~B2!

with

H05 (
n52N

N

$«ncn
†cn2J~cn

†cn111cn11
† cn!%1W, ~B3!
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W5 (
k52N

N

\vkf k* f k , ~B4!

and

«n5\v02 (
k52N

N

~xk
~n! f k1xk

~n!* f k* !. ~B5!

This form for the Hamiltonian matches the form discuss
by Cottingham and Schweitzer@10#.

We next diagonalizeH0 by the transformation

cn5 (
n52N

N

ann An ~B6!

to give

H05 (
n52N

N

En An
† An1W ~B7!
d

C

n

s.
d

and choose the shift to have the form

f k5 (
m52N

N

ams
2

xk
~m!*

\vk
. ~B8!

With this choice one can show that

Es1W5\v022\h(
n

ans
2 ~2ans

2 1an11,s
2 1an21,s

2 !

22J(
n

ansan11,s , ~B9!

which is the standard form for the soliton energy in Eq.~32!.
The essential difference between our approach to pa

diagonalization and that chosen by previous authors is
we use the dressed operatorsDn as opposed to the bare op
eratorscn . This permits a more compact form for the Ham
tonian as shown in Eq.~33! and removes remaining linea
shift terms for the phonon operators as found in Eq.~B2!.
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