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Davydov soliton and polarons in molecular chains: Partial Hamiltonian diagonalization
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The energy of a Davydov soliton from a site-independenD@r wave-function ansatz is obtained in the
discrete chain model by using a simulated annealing approach to obtain the envelope of the soliton. Partial
diagonalizatiorfA. A. Eremko, Y. B. Gaididei, and A. A. Vakhnenko, Phys. Status SolidiZ, 703(1985]
of the Davydov Hamiltonian allows the soliton to be explicitly displayed in the Hamiltonian. The site-
dependent oD1 Davydov wave-function ansatz is examined variationally using the simulated annealing
approach. This approach leads efficiently to a minimum energy solution in the form of a uniform polaron state
as required by translational symmetry. A simple form for the polaron state is displayed. We find no evidence
for a minimum energy localized state such as is found from the more constfaidedave-function ansatz.
[S1063-651%98)15111-5

PACS numbsgps): 87.15~v, 63.20.Ry, 02.70.Rw

I. INTRODUCTION (creation operators of the molecular vibration associated
with moleculen. The operators, and cl obey the usual
In 1973 Davydov[1,2] postulated the existence of self- commutator relations
localized states for condensed-matter molecular systems in
which high-frequency motiongxcitons or molecular vibra-
tions, for exampleare nonlinearly coupled to low-frequency
(acoustic or optical phongmmotions. Subsequently, Davy-
dov and others refined the initial concepts and additionahnd
mechanisms for self-localization were preserigd5|. The
subject received a major boost in 1983 when Caetral.
[6,7] produced spectroscopic evidence from infrared and Ra-
man spectroscopy for Davydov-like solitons in acetanilide.
This apparent experimental verification was followed by aThe Hamiltonian in Eq(1) does not explicitly display self-
large body of work, mostly theoretical. An excellent review |ocalization. As introduced by Eremko, Gaididei, and Vakh-
of this work is availablg5]. nenko [8] and further developed by Cottingham and
A variety of Hamiltonians that may or may not reflect true Schweitzer{9—11] it is possible to transform the Davydov
molecular systems have been used to display and presumatamiltonian of Eq.(1) in a formally exact manner into a
to exhibit the Davydov solitoff5]. One of the more widely form that explicitly contains the creation operator for the
studied Hamiltonians involves an interaction term that is bi-soliton, self-localized state when the site-independent Davy-
linear in the molecular vibrations and linear in the phononsdov D2 wave function ansatz is us¢f,12]. This transfor-
The symmetrized version is given by mation, which is called partial diagonalization, has been
done previously in the continuum limi8—211]. In this paper
we introduce a simulated annealing procedure that allows us
—J(ciCnert Cl+lcn)} to numerically achieve a similar partial diagonalization for
the discrete form in Eq6) of Sec. Il in the approximation

[Cn,Ch]1=6nm (2a)

[cn.Cml=[c!,cl]1=0. (2b)

n

1
HeS [ﬁwo(c;cn+§

p2 that the chain is finite in length. Using this numerically exact
n 2 . .
+2 —+ = (Qn+1—0n) form, we compute elsewhere decay times for the discrete
n [2M 2 . . A
chain as opposed to the continuum case. This finite length
approximation is tested by increasing the length of the chain.
+X2 cﬁcn(qnﬂ—qn_l), (1) The simulated annealing algorithm is described in Appendix
n A. Our approach to partial diagonalization is somewhat dif-
ferent from the previous approaches and we describe this
wherewy is the frequency of the molecular vibration on eachdifference in Appendix B.
molecule of the chainJ is the dipole-dipole interaction In Eq. (1) we have used the symmetric form,,
strength between the vibratior', is the molecular mas¥  —q,,_, in the nonlinear interaction with the phonons. Al-
is the force constant between moleculgss the nonlinear though commonly used in studies of the Davydov soliton, it
coupling constanty,, andp, are the position and momentum has been criticized as inappropriate for hydrogen-bonded
operators of molecule, and c, (cﬁ) are the annihilation systems such as the alpha h¢l8]. We pursue the symmet-
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ric form in the present work since it permits comparison with wa=2KIM, 9
a considerable body of work and we examine other forms in
subsequent work.
Other choices for the soliton wave function ansatz have o,=4y sgnk cos(
been proposed and they include the site-deperidé&ransatz
[14] and a modified 1 due to Brown and Ivi¢15]. Consid-
erable debate has occurred on the issue of the best structufg
for this ansat£15]. TheD1 ansatz is the most flexible of the
extant choices and we examine it herein to determine if it
leads to a localized, minimum-energy state. We find that it Xf(”):crkex%ZM
does not.

This paper is structured as follows: in Sec. Il we achieve . .
partial diagonalization of the Hamiltonian in E€) while ~ 'he function sgrk produces the sign dt. The above con-

defining the creation operator of thB2 soliton, self- ventional analysis implies a cyclic chain since from E@s.

localized state. We examine in Sec. il both the behavior of"d(9) We finddy.,=g-y. We also introduce the param-
the D2 soliton energy and the envelope shape of b2

wk
2N+1

|sin wk/(2N+1)]]\| 2
2N+1 ’

(10

kn
2N+1

. (11

soliton with respect to the Hamiltonian parameters. In Sec. — 2
IV we pursue theD1 ansatz using simulated annealing. We _ 2x _ Tk
; ; n= 7> (2N+1) = 12
conclude with summary remarks in Sec. V. hw, 8hwy|,_,
Il. PARTIAL DIAGONALIZATION OF THE for later use. The Hamiltonian in E¢p) is the starting point
HAMILTONIAN for our Davydov soliton analysis.
We define aD2 soliton creation operator by
We begin by transforming the molecular coordinates to
phonon creation and annihilation operateﬁsand a, using AT=S 2 clex s.a—s*al 13
the standard transformations given by s % msCm Zk (S@csica) | 13
N - -
AM oy ]2 wheres, anda,,s are parameters to be determined by ener
po= 2 & (a+aly) ® X on, i o e by

minimization. This choice for the creation operator is due to
Davydov[12] and is known as thB 2 ansatZ5]. It provides

and a coherent state structure for the phonons when time depen-
dence is included. In the present work we are only interested

K==N | 2

_ EN: w| P vz t in the static structure of th®2 soliton in terms of energy
q”_lk?N &n 2M w, (a—aty), 4) minimization of the Hamiltonian expectation value for the
) ’ variational state created by the operation of the creation op-
with erator in Eq.(13) on the vacuum. Elsewhere, we include the
time dynamics of the second quantized operators in the
(k)_exp[27ri (kn)/(2N+1)] 5 Heisenberg sense to examine issues of the lifetime obthe
én = \/m . (5 soliton.

Following Eremko, Gaididei, and VakhnenK@&] and

The constanN specifies a chain of lengthhe+ 1 with sites ~ Cottingham and Schweitz¢®—11], we want to carry out a
labeled—N to N andN is taken to be finite but large enough Partial diagonalization of Eq6) such that the soliton opera-
so that increasingl has no effect on calculated results. Sub-tor in Eq. (13) appears naturally. We review their approach

stituting Eqs.(3) and (4) into Eq. (1) yields in Appendix B. To accomplish this task, we use the unitary
transformation given by

1
H=> [ﬁwo(cgc,ﬁrz —J(cleqitel . cn)
n UTzexr{E chcm(E (stal—seay) ||, (14)
N m k
t 1
+k=§;N ﬁwk(akak—l— 2) Wlth
N N
- 2 2 et At X @), (6) Dm=UcmuT=cmexp[2k (st af—say) (15)
“\ =
where and
. % 1/2
X :X(ZMwa> ! @) Bi=UaU'=a,+s; > clen (16)
m
_omk .
W= wg|Sin , (8)  to obtain

2N+1
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H=; {hwoD!D,—I(D!Ds1+D], D)}

+ E ﬁ(kalBk‘F
k

; ﬁwks’k‘sk)% D/ DnD!D,
3 (st x50 S DDADID,

- % {(hwsc+ xi")BkD/ Dy,

+(hosk + X" )BDIDy}. (17)
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by requiring
; {Sna:uanv_ ‘](a:Man+ 1,V+ a:+ l,uanv)} = EVE/.LV .
(25)
We next multiply bya,,, and sum ovey to obtain
8mamv_‘](am+l,v+amfl,v):Euamv- (26)

It is obvious from Eq(26) thata,,, can be taken real without
loss of generality.

We now determine the parametgr by minimizing the
energy of one state, which we designate the soliton state with
v=s. From Eq.(25) we have

Unnecessary zero-point energy terms have been dropped.

From Eq.(2) and the unitary transformation in E(L5), it is

clear thatD,, and D,T] obey the usual commutator relations.

Noting that

D/D.D!D,=D!D'DDn+ 8ymD Dy, (18

we have
H=Ho+> hoBiB— > {(iwsc+xi")BDID,
k kn
+(hayst +xW)BIDID,}

+% (haysy st xise +Xf<n)*5k)§ D! D/DmDy,

19

whereH, is defined by

Ho=§{snDion—J(DxDMﬁDEHDn)} (20

and
enzhwo+2k (hanst st xMst +xMs).  (21)

Note thatH is tridiagonal withe,, andJ real. We use cyclic
boundary conditions on the chain such tbgt, ;=D _y.

Following Eremko, Gaididei, and Vakhnenk8], we now
proceed to diagonalize the Hamiltonidaty by a unitary
transformation whose elements ag, with

Dp=2 anA, (22)

and

> anak,= dum, 2 an,ah, =0, (23)

Note thata,, is a square matrix of dimensiorN\2+ 1. If the
transformation in Eq(22) is applied to Eq(20), we obtain

Ho=2 E,AIA, (24)

Es:; {Enaﬁs_ 2‘]ansan+1,s}- (27)
We require
JEg , 9€n
= — = 2
asg ; @ns ask 0 28
and using Eq(21) obtain
S
Sk=— —ﬁwk . (29)
Placing this result in Eg.21), we find
()* (m
_ 2 Xk Xk
en ﬁwo-l-jEm ajsam —hwk
O ™+ ™)
2
- a , 30
% ms}k: ﬁwk ( )
which, using Egs(10), (11), and(12), becomes
en=hwo+2h 7,[ % [2af+ad@d 1tad 19)]
—2[2a5ctan, o+ aﬁl,s]] : (3D)

If a,,sis either symmetric or antisymmetric abouts, ¢, is
symmetric abouh=s.

Inserting the expression fef, given by Eq.(31) into Eq.
(27), we obtain

Es=hwo— 2% 77; aﬁs(zaﬁs_l_ a§+ 1t aﬁfl,s)

_ZJ; AnsBn+1s- (32

Equation(32) is the standard equation, which must be mini-
mized to obtain the excitation envelope for th@ Davydov
soliton[16],

In Appendix A we describe a simulated annealing com-
puter code, which can be used to obtain numerical values for
the coefficients,s. Once the soliton envelope is computed,
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the HamiltoniarH is completely defined since the envelope
parameters,,s determines, in Eq. (29), which in turn deter-
mine g, in Eq. (31). We can then diagonalize the tridiagonal
matrix represented in Eq25) using the Jacobi algorithm
[17]. Consistency requires the lowest eigenvalue toEQe
and the eigencoefficients,s to be the same as those ob-
tained from the simulated annealing minimization. This in-
deed proves to be the case.

Having diagonalizedH,, we transform the full Hamil-
tonian in Eq.(19) using Eqg.(22) and obtain

H=> E,ATA + ﬁ}k‘, BBy

+h Y, [R(K,u,1)By+ R(k,u, 1) *BLALA,
kuv

+2 G,,> AIATAA,, (33
% A
where
1 (n)/ A2
Rtk 1) =5 2 X (@0~ Anun)  (39)
and

4 2 2
2 (st ansn 1)

G,,=4h 7]; an,an,

_aﬁ+ 1s zaﬁ,s_ aﬁl,s}' (35)

Note thatR(k,s,s)=0. The partially diagonalized, discrete
chain Hamiltonian in Eq(33) is the basis for the results
described herein. Although similar in spirit to previous par-
tially diagonalized Hamiltonians in the continuum approxi-
mation [8—11], it differs in that fully dressed operators in
Egs. (15) and (16) are used which leads to the multiexcita-
tion term involvingG,, . It is important to understand that
the Hamiltonian in Eq.(33) is equivalent to the original
Davydov Hamiltonian in Eq(1) having been obtained by
unitary transformations of the second-quantized operators.

[lI. COMPUTATIONAL RESULTS FOR D2 SOLITON

We next survey the results obtained from the diagonaliza-
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FIG. 1. Comparison ob1 andD2 energy spectra fdd, using
set 14 parameters.

5, respectively, and in Table | the envelope amplitudes
(where they are symmetric about site 0, we display only half
the envelopgfor the ground state or lowest energy oscilla-
tor. It is clear from these results that a localized excitation
spanning 10 to 20 sites exists for the lowest energiH pf
The envelope for set 5 is more localized and reflects the
smaller value forJ. Furthermore, we see for set 5 that an
additional pair of energy values drop below the energy band.
Their amplitudesa,,, are also given in Table | and we see
that they are also localized about site 0.

To understand the behavior of the oscillator energies in
set 5, we examine the limi=0. In this limit we find from
Eq. (20) thatH, is already diagonal and thus the transforma-
tion matrixa,, is the unit matrix and,= ¢, with ¢, defined
in Eq. (21) and computed in Eq31) in terms ofa,. In this
special case al=0, the energieg,, are site specific; that is,
energyE, is assigned to the oscillator at siteSincen=0 is
chosen as the center of the soliton, we hayg= 6,0 and
we find forn=0 that

E0=80=ﬁw0—4ﬁ77, (36)

which has a value of 1657 cm for set 5. For the two cases
n=+1 andn=—1, we obtain

Ei1=E_1=hwo, 37

1675

1670

tion of Hy for various choices of the underlying parameters
hwg, hw,, x, andJ. Note that the diagonalization process
does not depend on temperature. As discussed in Appendix
A, we arrange for the soliton to be centered about site 0. We
begin by examining the energy valuEs. We choose two
classes of parameter values: one class is exemplified by set 5
(see Table Il and is given byfiwy=1665cm?, fw,
=100cm!, y=10cm %, andJ=1 cm%; the other class is
exemplified by set 14 wherehw,=1665cm?, fw,
=88cm !, y=10cm !, andJ=7.8cm % The first class

(set 9 is the smallJ regime while the second clagset 14
represents the range of values described as the normal set for
matching alpha-helix parametefS]. In Figs. 1 and 2 we

Ey (em1)

1665

1660 4

1655

D2

=]
-

i

display theD2 oscillator energy values, for set 14 and set using set 5 parameters.

FIG. 2. Comparison oD1 andD2 energy spectrum foH,
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TABLE I. Envelope amplitudes, for localized states.

Set 14 Set 5
Ground state Ground state Localized pair

n ans n ans n any n any
0 0.668 691 0 0.984 450 -5 0.000 -5 0.000
1 0.470 881 1 0.123 966 -4 0.001 -4 0.002
1 0.214 606 2 0.007 837 -3 0.011 -3 0.012
3 0.085 634 3 0.000 492 -2 0.089 -2 0.091
4 0.033 343 4 0.000 031 -1 0.701 -1 0.690
5 0.012 933 5 0.000 002 0 0.000 0 —0.175
6 0.005 013 1 —0.701 1 0.690
7 0.001 943 2 —0.089 2 0.091
8 0.000 753 3 -0.011 3 0.012
9 0.000 292 4 —0.001 4 0.002

10 0.000 113 5 —0.000 5 0.000

11 0.000 044

12 0.000 017

13 0.000 006

14 0.000 002

which has the value 1665 crhfor set 5. Finally, we have A plot comparingEs andEs is shown in Fig. 3 for various

for the remaining energies that values ofJ and » with Zwy,=1665 cm' . For each value of
J the plots show a locus of pairs of values B¢ and Eg
E,=fhwy+4h, (38  increasing monotonically towards the diagonal asde-

creases. The obvious reason for this is that the soliton state

which has the value 1673 cthfor set 5. Thus, we predict broadens ag; de(_:reases so that the discrgte and qontinuum
that the spectrum of the oscillator energiesHg at smallJ values of thg soliton energy converge. This behavior can be
will manifest a single low energy value, an intermediate paiﬂ‘fng‘?rStOOd in more detail by éxamining the column labeled
of nearly degenerate values, and a band of values as is seefl N Table lll. This column contains the value affor the
in Fig. 2. To show that the set 5 results extrapolate to th@”velonans of the localized state wher,s first drops be-
three energy values predicted above, we present in Table [1'W 10" and is thus a measure of the width of the localized
sequence of calculations in whichis varied while other state.. We find forJ=7.8 thatn is Iarger, which indicates a
parameters are maintained at their set 5 values. For the balgfalized state spread over more sites. As argued by others
of energy values we report only the lower and upper ban(ﬂ,5]' such a state is expected to more closel_y follow the con-
energies from the finite dimensional matrix diagonalization inuum model. For a separate check on this contention, we
As J approaches zero, the limiting values are clearly ap£ompare in Table IV our _calculated envelope with the con-
proached. tinuum model envelope given 4,18

We next compare the energy of the localized stateas 21 7\ 12 My
found in Table Il with the continuum model enerdpsc. ar.= —) secrﬁ— n
Note first thata,s and Eg obtained by minimizing Eq(32) J J
depends only o, 7, andJ. This is, of course, true also of
Esc given by[9]

. (40

Set 9 of Table Il is the most diffuse local state and we find
from Table IV that the discrete chain envelope is similar to
the continuum model. For set 5, a very narrow localized
(39) state, the continuur_n model brgaks down. On the other hand,
the parameted/# 5 in Eq. (40) is clearly a measure of the

16 #2752
Esc=fhwg—2)— 373

TABLE II. Behavior of energy levels for small. Energy units are cit.

Ground Pair Band
J Lower Upper Lower Upper
0? 1657.00 1665.00 1665.00 1673.00 1673.00
0.1 1657.00 1665.00 1665.00 1672.80 1673.20
1 1656.75 1664.63 1664.88 1670.78 1674.73
2 1656.03 1663.58 1664.56 1668.15 1676.05
3 1654.92 1662.04 1664.02 1665.34 1677.19

a/alues in this row are the theoretical valueslatO.



6412 CLOGSTON, McDOWELL, TSAI, AND HANSSEN PRE 58

TABLE lll. D2 soliton energies witth o= 1665 cm%.

hw, X J hn Es
Set (cm™b (cm™ (cm™} (cm™b Ity n (cm™

Class 1: Small regime

1 100 5 1 0.500 2.000 8 1662.132
2 100 7 1 0.980 1.020 5 1660.587
3 100 8 1 1.280 0.781 5 1659.497
4 100 9 1 1.620 0.617 4 1658.215
5 100 10 1 2.000 0.500 4 1656.752
6 95 10 1 2.105 0.475 4 1656.341
7 90 10 1 2.222 0.450 4 1655.886
8 85 10 1 2.353 0.425 4 1655.377
9 100 5 2 0.500 4.000 12 1660.448
10 100 7 2 0.980 2.041 8 1659.318
11 100 10 2 2.000 1.000 5 1656.032
12 95 10 2 2.105 0.950 5 1655.655
13 90 10 2 2.222 0.900 5 1655.233
Class 2: Alpha-helix regime
14 88 10 7.8 2.273 3.436 11 1646.601
15 88 11 7.8 2.750 2.833 9 1645.548
16 70 10 7.8 2.857 2.732 9 1645.297
17 60 10 7.8 3.333 2.342 8 1644.127
18 50 10 7.8 4.000 1.949 7 1642.349
19 50 11 7.8 4.840 1.610 7 1639.898
width of the localized state in the continuum modig]. In IV. D1 ANSATZ

Fig. 4 we plot this parameter versus the values in column

of Table Ill. We find that this parameter tracks with the size TheD1 Davydov ansatz allows for site dependence of the
of the localized state for the discrete chain. We note also thparameters, in Eq. (13) and is considered a more general
tendency for each curve in Fig. 4 to drop away from theform for dressing the vibron operatog, [15,19. In terms of
diagonal asEg decreases. This behavior tracks with the nar-2 D1 soliton creation operator the ansatz is given b4
rowing of the state as found by examining columim Table

Il and further agrees with the contention that broader local- TABLE Iv. Comparison of continuum envelope with dis-

ized states will trend toward the continuum model. cretized envelope.
2hp\Y2 4hn
: S
1670
Set 9J/% 7=4.000
—_a— J=1
0 0.7071 0.6327
wl o =2 1 0.4582 0.4753
w0 J=7.8 2 0.1880 0.2436
By, (cm]) 3 0.0702 0.1089
4 0.0259 0.0472
16501 5 0.0095 0.0203
o 6 0.0035 0.0087
0.9 7 0.0013 0.0038
1640 - 8 0.0005 0.0016
st 9 0.0002 0.0007
g 10 0.0001 0.0003
1630 . . . 11 0.0 0.0001
1630 1640 1650 1660 1670 Set 5 /% 7=0.500

Eg (em-1) 0 2.0000 0.9845
1 0.0013 0.1240
FIG. 3. Correlation plot for discrete chain soliton enefgyvs 2 0.0 0.0078

continuum model energisc.
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12.5 To properly use Eq(44), there are some technical points
related to thek=0 terms. We first require that the factors
o s” be independent of the site label This is a minor re-

104 striction on the wave function ansatz, which keeps the expo-
nential factor in Eq(44) from misbehaving. We next scale

n the resulting factor such thaty=(oq/wg)Se. Using Eq.
75 oo (12), this permits us to express the=0 terms in Eq(44) in
oo terms of the parametey. In the work below we treas, as
the variational parameter fé&e=0 terms. It is allowed to be
a complex number.

% — With the technical points fok=0 in hand, we have mini-
M mized the energy expression in Eg¢4) using the simulated
annealing procedure in Appendix A by independently vary-
e N 20 30 o ing the parametera,,s, "st™, and's{™ subject to the nor-
N malization constraink}y_ _ a%.=1. We have changed both
n N, the size of the cyclic chain, and the initial starting point.

As starting points for the annealing, we have cho&Brthe
FIG. 4. Comparison of the parameti » with the valuenfor D2 values for the parameters as described in Secs. Il and lIl,

which a, first drops below 107, and(2) the values for a uniform polaron, namely,
* 1
Al=2 ang; exr{E (siMac—s™M Al |- (4D I 45
R ™ 2N+ 1 9

To make use of this definition, we first obtain the expectation, 4
value of the Hamiltonian in Eq6) using a state formed by

operation of the creation operator in Eg¢1) on the vacuum Xf(m)
state. Assuming only cyclic boundary conditions given by s\"=— oy (46)
(N+1) _ o(—N)
ST 42 We point out that foiN sufficiently large, the localize®2
and soliton is unaffected to a high degree of numerical accuracy
by the choice of cyclic as opposed to truncated chain bound-
an+1,=8a-N s (43 aries. We find for all cases studied includiNg=1-5, 10, 21

) . with Hamiltonian parameters specified by set 14 in Table Il|
wheres, ™ is allowed to be complex anal, is taken to be  that a common minimum energy state is always achieved and

real, we obtain that the variational parameters are given by
N N N 1
*
ES:thmEN a2m3+ mEN azmskEN (ﬁwks(krms(km) ams:\/= (47)
== == == 2N+1
N
* *
+ oy Mg(m™ 4 g(m)y (m) )_ZJm;—N Amems 15 and
A
N (m) _ ko (m)
1 S =~ Xk (48)
Xexp[ —5, 2 (S s —s(km*”*)} hox

where \ is essentially the only free variational parameter
and is real and even ik This seems like a remarkable result
considering that a large number of freely varying parameters
converge to this simple form. However, comparing with Egs.
The superscript® and | indicate real and imaginary parts. (45 and(46), we see that the minimum energy state for the
We have dropped zero-point energy terms and the phonoR1 ansatz is a modified uniform polaron state as required by
energy from Eq(44). We have not included a thermal aver- translational symmetry for the eigenstates of the full Hamil-
age of the phonon bath, which is sometimes dswecalled  tonian[20], and is not a localized state as proposed by Davy-
thermalized Hamiltonian{ 5] since we agree with Schweitzer dov[14]. It is evident from Eq(44) thatE¢ cannot be mini-
[11] that this procedure is contrary to normal practice inmized with respect toa,s under the constraints of
guantum statistical mechanics. Such an average adds the fawrmalization for thea,s in Eq. (23) and translational sym-
tor cothfiBw/2) to the exponential in the term which de- metry unless the exponential factors become independent of
pends ond. We include the effect of temperature in a sepa-lattice site numben. This requirement leads directly to Eq.
rate paper by examining the behavior of relevant time(48).

correlation functions where appropriate quantum statistical In analogy with Eq(19) for theD2 case, it is useful to set
averages have been taken in a rigorous, systematic manneup a similar Hamiltonian for th®1 case in order to estab-

N
xcos{ > (Reimigimt ) _1g(mRg(m+1)y | (44)

K=—N
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lish a HamiltonianH, and a spectrum of oscillator energies.
To accomplish this transformation of the Davydov Hamil-

CLOGSTON, McDOWELL, TSAI, AND HANSSEN

tonian in Eq.(6), we define

and

with ¢l cp=dld,,

and

where the expectation value is taken with respect to th
vacuum state denoted by subscriptWith these definitions

Ay
FoS Mg
n Ek frooy (Xk &= Xk ),

uf= exp{ % c;cmfm) ,

d,=Uc,UT=ce'm,

bk—UakUTzakJrE ™ et

. It can be shown that

[fn,fm]=0

<efn*fn+1>vz <efn+1’fn>v

= exp( - 8; P

we find that

and

with

Diagonalization ofH, produces thé 1 spectrum of oscilla-
tor energies whemn is chosen to minimize the lowest en-
ergy value. Note that the phonon-vibron interaction term in
Eq. (55) vanishes foin = 1. We further note that the form of

H=Ho+ > hayblb—J3> [(e fnt i
k n

—(e fn*fnrr) ydld, 4

+(e frttfo— (e frat o) ydl, 1d,]

+E[<xk D xibi+ (A= 1) X" bi1dld,
(m) <n>* o= 2h Tt
+2 EX “wr | |dndndndn
2 { hw0+2 )\2 2\ )}
Xdldn_\]_(dldn+1+dx+ldn)]n
—_ )\kO'k 7T
J=1J exp( 82 W7o 2SIt o

(49

(50

(51)

(52

(53

(59

(55

(56)

(57)
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FIG. 5. Plots of\ values for sets 5 and 14 wit=20.

the expectation value in E@44) requires one for complete-
ness to set up the Hamiltonian in E§5) with terms involv-
ing the vacuum expectation value in E§4). These interac-
tion terms, although small in magnitude, should not be
ignored when dynamics is considered.

As a concrete example of the results obtained Bdr
minimization, we show in Figl a comparison of the oscil-
lator energy spectruri, obtained byD1 andD2 minimi-
zation using set 14 witiN=20. TheD1 spectrum clearly
lies below theD2 spectrum and there is not a gap separating
he lowest-energy oscillator from higher-energy ones within
the limits of the finite chain computation. Similar results for
set 5 are shown in Fig. 2. Plots bf values for sets 5 and 14
are given in Fig. 5.

Since theD 1 ansatz as described by E¢47) and(48) is
the lowest energy solution, we consider next the issue of
whether theD2 state is at least metastable with respect to
changes in the parameteas and s(”) To accomplish this
task, we set alh,s ands{" values equal to theib2 values
except for ones{™ , which is specified as{P’=sP?+Rg{P)
whereRs{P) is an infinitesimal, real change. Substitution into
Eq. (44) yields to lowest order |rﬁafp) the result

E=ED2+al2 P+ P -2 E ab2 <m} P,
(58

where the superscrigd2 indicatesD2 soliton values. The
coefficient of Ro{P) is clearly a real number and thifer(P

can be chosen to have the appropriate sign to lower the en-
ergy Eg relative to EEZ. Therefore, theD2-soliton energy
EP2 is not a metastable point in the spaceagf and s{”
since infinitesimal changes in one of te& can lower the
energy.

To further pursue this point regarding the choice of the
wave function ansatz or creation operator and the energy
surfaceEg, it is useful to consider the modified1 ansatz
due to Brown and Ivi¢15]. We call this case the Bl ansatz
and it is given by
X"

S(kn):sk— S hoy

(59
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where § is a variational parameter. This choice & rep-

resents a constraint upon the forms?’ as compared to the
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full D1 minimization considered above and is expected tdact thata, s deviates only slightly from the uniform value of
produce a higher energy. As pointed out by Brown and Ivic0.156 1738 aN=20. The center of the soliton freezes out

[15], this form allows one to move from thHe2 soliton (5
=0) to the standard uniform polarod<€ 1). Substitution of
Eqg. (59) into Eq. (44) with minimization ofs, yields

N
ES'=[fiwot (5°—28)4hn] 2 ak
n=-N
N

H(E-1Mhy X (st ardny)

N

~2)g 2 (anshni1o), (60
with
S oof ., Tk
Jg=1J exp( —852k:2_N 0l Sir? oni1) (6D
and
an+1s=8a-ns (62)

when cyclic boundary conditions are imposed. For fixed
we have used the simulated annealing algorithm in Appendi

A to find a,s andEZ'. A plot of E2' as a function ofs is

randomly. The values a&, s are converged to withirt 106,
which accounts for the small amount of noise in the plot.

From our perspective we find that full minimization of the
D1 ansatz without constraints leads to the loss of localiza-
tion and the energy gap through the formation of the modi-
fied uniform polaron solution of Eq$47) and(48). This is
consistent with the requirement of translational symmetry for
the eigenstates. Although these time-indepen8etiD 2 re-
sults suggest that@2 soliton will be unstable, it is possible
that theD2 state, once created, can exist coherently for a
period of time via bottlenecking or related effects. We ad-
dress these lifetime issues in a separate paper.

V. SUMMARY

Several decades after its introduction, the existence of the
Davydov soliton in molecular chains continues to be a ques-
tion. As pointed out by Cottingham and Schweitg@r11],
the key to proving its existence lies in correct and appropri-
ate application of quantum statistical mechanical principles
to the problem. A first step in this regard is the partial diago-
nalization principle introduced by Eremko, Gaididei, and Va-
khnenko for the continuum limit cag8]. This approach al-
lows one to explicitly display the soliton as a creation

)6perator in the Hamiltonian. The next step is to remove the

restriction to the continuum case and carry out partial diago-

given in Fig. 6 using set 14 parameters. The corresponding,jization on a molecular chain. We have carried out this

a,s values for6=0.875 are shown in Fig. 7. We find from

Fig. 6 that there is a minimum iEZ' near §=0.875; how-
ever, the curve foEY' lies above thd 1 minimization value

of Eq<=1641.415 267 cm®. This is as expected since the Bl

ansatz is constrained relative ibl. Brown and lvic make
the point that the energy difference betwe&f' at &

=0.875 andE® at 6=1.0, the standard uniform polaron

step herein for th®2 soliton case by transforming the stan-
dard Davydov Hamiltonian in Eql) into the form in Eqg.
(33), which explicitly includes the soliton, self-localized
state. For a chain of lengthNe+1 this transformation is
rigorous and involves no approximations other than numeri-
cal diagonalization of a matrix.

The transformation from Ed1) to Eq. (33) involves the

limit, represents an energy gap that can sustain the localizagse of an approach for computing the soliton envelegg;
structure shown in Fig. 7. We note that the location of thenamely, simulated annealing. This procedure allows for ac-

center of the soliton in Fig. 7 at abont= —11 arises from

curate and rapid computation af,s for a zero momentum

the nature of the random walk used for convergence and thBavydov soliton located at the center of the chain on site 0.
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We argue that the Hamiltonian in E¢433) is the proper APPENDIX A: SIMULATED ANNEALING SOLUTION
starting point for an analysis of the Davydov problem in the FOR ENVELOPE AMPLITUDES

context of the standarB2 Davydov soliton. To obtain a set of envelope amplitudess, which mini-

The creation operator for the soliton st_ate in Et1_3) USES  mize the energy in Eq32), we use a simulated annealing
the standard2 form for the Davydov soliton and it can bé gigorithm. Since the expected localized solution has zero
argued that this is not the best form. We address this point by,omentum. we start by settirg,.= 6,,0; that is, we localize
examining the more general form known as Bié ansatz in_ the envelope at site 0 in the middle of the chain. We then
Eqg. (41). This choice leads to the energy expression in Eqcarry out a Metropolis Monte Carlo walk as follows: we

(44), which is to be minimized. Using the simulated anneal-select a new value for the coefficients according to the rule
ing approach that allows for arbitrary variations of all the

ansatz parameters, we have found that the minimum solution aW=al9%+ 5(R-3), (A1)

always turns out to be a modified uniform polaron solution

with the ansatz parameters given by E@s) and (48). We :

believe this to be a result that potentially has application tcper be_‘WE‘_e” Oand1. We next uniformly scale the new values

other condensed matter problems involving similar polaron-t0 maintain the normalization

like transformations. In obtaining this result we have made

no symmetry assumptions regarding the ansatz parameters 1=, (all*W)2, (A2)

other than the cyclic condition that the endpoints of the chain :

(labeled N andN) are coupled. This condition is reflectgd in We compute a new energ&rE(S”ew), from Eq.(32) and a test

Eqgs.(42) anQ(43). We have shown further that thz2 sol|.- ~ function e* where

ton energy is not metastable and can be lowered by infini-

tesimal changes in the parames€? . The Brown-Ivic modi- gL g(new

fied D1 ansatz, a constrained form of the flill ansatz, is X= T, (A3)

found to have an energy above the fOIL solution(modi-

fied uniform polarom but below the standard uniform po- whereT, is an annealing temperature. If the test function is

laron solution. From our viewpoint of using the fllll case, greater than one, we accept the move. If the test function is

the soliton and polaron perspectives merge to form a modiless than one, we compare withand accept the move if

fied uniform polaron solution as described by E@) and ~ greater than the random number. The paramefessd T,

(48). are chosen and varied interactively until convergence is ob-
Although theD2 soliton that arises from a restricted form tained onEs. We find that the process goes very quickly and

of theD1 ansatz is higher in energy than tbd case, itis ©One can obtain the envelope amplitudgs to any desired

possible that, if formed, it could persist as a coherent statéXccuracy.

The gap shown in Fig. 1 between the localized, lowest-

energy oscillator energyl2 soliton) and the other levels APPENDIX B: PARTIAL DIAGONALIZATION

enhances this viewpoint. On the other hand Cottingham and | this appendix we examine the partial diagonalization

Schweitzer have shown using continuum partial diagonalizaprocedure of Eremko, Gaididei, and VakhneriB) as pur-
tion and second-order perturbation theory that the decay timgyed by Cottingham and SchweitZ@-11] in terms of a

is very short(less than a picosecopdor set 14[9-11.  discrete chain using the notation of Sec. Il. We begin by
However, a serious issue in this case is the use of the coarrying out a linear shift of the phonon modes such that
tinuum approximation, simple perturbation theory, and the

meaning of the decay time computed. The general problem by=ay—fy, (B1)
resides in the question of how one carries out quantum dy-

namics for condensed matter problems. In a separate pap‘é( . ; . .
where the shift contains the occupation number operator in

we examine this prob_lem n the C(_)ntext .Of Davydd2 the high-frequency vibrational modes. It is at this juncture

solitons using the partially diagonalized, discrete moleculat ; . . o o )
hain Hamiltonian in Eq(33) that we differ with the previous partial diagonalization pro

chain Hamptonian in £qias). . cess. Using Eq(B1), we find that the Hamiltonian is trans-

We conclude by observing that tiiz2 andD1 creation formed to

operators in Egs(13) and (41) insert one quanta into the

vibron modes. Kerr and Lomdah21,22, following a sug- N N

gestion by one of u$AMC), have examined the case for H=Hy+ 2 hwkblkar Z fio (b + blfk)
multiquanta creation operators. To date they have found that k=-N k=-N

whereéis a jump distance anR is a uniform random num-

erefy is ac number. Note the difference with E{L6)

increasing the number of quanta does not increase the stabil- N N .

ity of the soliton. —kz > clen(Mbet XM b, (B2)
=—Nn=-N

with
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N
W= > faflfy, (B4)
k=—N
and
N
en=fioo= 2 (it X o). (B5)

This form for the Hamiltonian matches the form discussed

by Cottingham and Schweitz¢t0].
We next diagonalizéd, by the transformation

N
Ch= z an, A,

p=—

(B6)

to give
N

Ho= >, E,ATA +W (B7)
r=—N
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and choose the shift to have the form
N (m)*
_ 2 Xk
f= 2 an o (B8)

With this choice one can show that

EotW=fog= 272 ary2anst . ot ag 1))

_2\]; AnsBn+1s, (B9)

which is the standard form for the soliton energy in E29).

The essential difference between our approach to partial
diagonalization and that chosen by previous authors is that
we use the dressed operat@rs as opposed to the bare op-
eratorsc,,. This permits a more compact form for the Hamil-
tonian as shown in Eq.33) and removes remaining linear
shift terms for the phonon operators as found in Bg).
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